MTH 406: Differential geometry of curves and surfaces

Homework V: Tangent Space

Problems for practice

1. Consider the torus T^{2} given by parametrization in Lesson Plan 2.1(ii)(b). Describe the tangent plane at an ordinary point of the $u=0$ parameter curve and at an arbitrary point of the $v=0$ parameter curve of T^{2}.
2. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map, and then let S be a regular surface that is left invariant by L. Then $\left.L\right|_{S}$ is a differentiable map, and

$$
d L_{p}(v)=L(v), \forall p \in S \text { and } v \in T_{p}(S) .
$$

3. If the coordinate neighborhood of a regular surface can be parametrized in the form

$$
f(u, v)=\alpha_{1}(u)+\alpha_{2}(v),
$$

where the α_{i} are parametrized curves, show that the tangent plane along a fixed coordinate curve of this neighborhood are all parallel to a line.
4. Show that the tangent planes of a surface given by $z=x f(y / x), x \neq 0$, where f is a differentiable function, all pass through the origin.
5. Let S be a regular surface, $p \in S$, and let N be a unit vector of $T_{p}(S)$. show that if $\left(p_{n}\right)$ is sequence of points such that $p_{n} \rightarrow p$, then

$$
\lim _{n \rightarrow \infty}\left\langle N, \frac{p_{n}-p}{\left\|p_{n}-p\right\|}\right\rangle=0
$$

6. Let G_{f} denote the graph of a function f. Let $U\left(\subset \mathbb{R}^{2}\right) \rightarrow \mathbb{R}$ be a smooth map, where U is open. If $p=(x, y) \in U$, and $q=(x, y, f(x, y)) \in G_{f}$, show that

$$
T_{q}\left(G_{f}\right)=G_{d f_{q}} .
$$

7. Let $S \subset \mathbb{R}^{3}$ be a regular surface, and let $q \in \mathbb{R}^{3} \backslash S$. Show that if p is the global minimum of the function

$$
f: S \rightarrow \mathbb{R}: p \stackrel{f}{\mapsto}\|p-q\|,
$$

then $\langle q-p, v\rangle=0$, for all $v \in T_{p}(S)$.
8. Prove that if a regular surface S meets a plane P at a single point $p \in S$, then $T_{p}(S)=P$.
9. Show that is all normals to a connected regular surface pass through a fixed point, then the surface is contained in a sphere.
10. Show that if all normals to a connected regular surface meet a fixed line, then S is a piece of a surface of revolution.

